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ABSTRACT

This paper studies the state space representation of time invariant

causal, linear input-output operators in continuous time. A realization

theorem in the Hilbert space context is established in full generality using

unbounded input and output operators. The first step is to construct an

abstract state space representation with a prescribed input-output behavior.

The second step is to transform this abstract system into a differential

equation. The uniqueness problem is discussed in some detail as well as the
J

relation to existing results in realization theory. - ,
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REALIZATION THEORY IN HILBERT SPACE

Dietmar Salamon

1 . INTRODUCTION

The aim of this paper is to study the state space representation of general infinite

dimensional, linear, time invariant, continuous time systems. A time invariant, linear

input-output system is described by a linear operator T which associates with each

locally square integrable input function on the time interval from 0 to + - a

corresponding output function which is also locally square integrable and represents the

system response to the input excitation. A state space representation is, roughly

speaking, a differential equation in some Hilbert space H whose input-output behavior is

described by the given operator T. This is known as the realization problem. Its

motivation comes from the desire to connect the theory of input-output systems with the

control theory for differential equations.

For finite dimensional systems and rational transfer functions the realization

problem has been extensively studied and satisfactory solutions can be found e.g. in

KALMAN-ARBIB-FALB [12], FUHRANN (8], [9], KALMAN [11]. The realization of systems with

delays, or more generally systems over rings, has been studied by KAMEN [15], [16], SONTAG

[23], [24], PANDOLFI [17], ROCHALEAU-SONTAG [20], EISING-HAUTUS [7], SPONG (25) and others

using algebraic methods. Distribution theoretic methods have been used in realization

theory by KALMAN-HAUTUS [13] and KAMEN [14]. For general infinite dimensional systems the

realization problem has been studied by BARAS-BROCKETT [2], BARAS-BROCKETT-FUHRMANN [3],

AUBIN-BENSOUSSAN [1], BENSOUSSAN-DELFOUR-MITTER [4], FUHRMANN [10], YAMAMOTO £26] using

functional analytic methods. In all of these papers the input operator B and the output

operator C in the state space representation are bounded. This leads to smoothing

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DHS-8210950,
Mod. 1.
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requirements on the underlying input-output operator T [26] and also may result in a

quite complicated construction of the state space (1], [4].

The essential new feature in the present paper is the consequent use of unbounded

input and output operators in the state space representation. Furthermore, the input

space U and the output space Y are allowed to be infinite dimensional. This allows us

to establish a realization theorem for arbitrary time invariant, causal, linear input-

output operators which satisfy a certain exponential bound. The latter condition is

necessary in order to construct a realization whose state space is a Hilbert space.

The realization theorem is derived in two steps. The first step is to represent an

abstract state space system as a differential equation (section 3). The abstract system

satisfies some standard axioms similar to those introduced by KALMAN-ARBIB-FALB (12]. The

second step is then to construct such an abstract state space system which has a given

input-output behavior (section 4). This construction is done in two different ways and

the relation between the resulting two state space models is discussed in detail. In this

context the Hankel operator plays a crucial role. The uniqueness problem for the

realization is then discussed in connection with various concepts of controllability and

observability (section 5). Furthermore, it is shown how the smoothing properties of the

Hankel operator are related to the boundedness of the output operator C in the

realization (section 6). In a preliminary section we discuss some basic concepts needed

for a state space theory of infinite dimensional control systems (section 2).

NOTATION

Let X and Y be Hilbert spaces. Then we denote by L(X,Y) and L(X) - L(X,X)

the spaces of bounded linear operators. L2 [0,T;X] denotes the Hilbert space of strongly

measurable, square integrable functions from (0,T) into X factorized by the subspace of

functions which vanish almost everywhere. By C(O,TIX] we denote the Banach space of

continuous functions with the sup norm. WI' 2 [0,T;X] denotes the Hilbert space of

functions x:(O,T] + X which can be represented in the form

-2-
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x(t) = x(O) + f x(s)ds , 0 C t < T
; 0

for some e L2[0,T;X] where the integral is to be understood in the sense of Bochner.

L Joc1'-;1' jto[O#,XlandW xo20,*0;X] denote the Frechet spaces of those functions

from [0,-) into X whose restrictions to the interval [0,T] are in L2[0,TX], C[O,T;X]

and Wl"2[0,TIX], respectively, for every T > 0. The natural dual space of L 2o[0,i;X]
1oc22

is the space L0 [--,O] of functions in L 2[-,0] with compact support via the pairing

00

0

(1.2) < *' > = f (-t),f(t) >x

for n* e Li [RX]. For any w e R the Hilbert spaces

[ ,x 0 t s

for 2 , = e L 2 [T sX] l f t a or)2  t

of the inera .

are dual to each other via the pairing (1.1). We also introduce the spaces

W1,2 a0-X e 1,2 1O-XI4eL2 '
W loc Wz

W1,2 =-ox e w1,21_k ;l1, (';~

For any interval I CR the shift operator T on L 2 [I1 is defined by

(rT*) Ifl*t + S), t + S e I,
t0 , t+ s tI,

for t e R, s e i, o*e L 2 IX]. The symbol x1, stands for the characteristic function

of the interval I.

-3-
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2. STATE SPACE THEORY

In this section we give a brief overview over the basic concepts in a state space

approach for time invariant, linear, infinite dimensional control systems. In order to

prepare the grounds for a realization theorem in full generality we will have to deal with

unbounded input and output operators. More precisely, we consider the control system

described by the differential equations

;(t) = Ax(t) + Bu(t) , x(O) = x0

(2.1)

y(t) - C(pI - A)- (Jx(t) - x(t)) + T ult)

with input u(t) 6 U, output y(t) e Y and state x(t) e H. All three spaces U, H, Y

are Hilbert spaces and we assume that A is the infinitesimal generator of a strongly

continuous semigroup S(t) e L(H). Furthermore, we consider W - V(A) C H and

V* - D(A*) C H* as Hilbert spaces with the respective graph norms so that

W CHC V

with continuous, dense injections. Of course, S(t) is a strongly continuous semigroup

on all three spaces W, H, V and A can be considered as a bounded operator

A e L(w,H) n L(H,V). Finally, we assume that the opeators B e L(U,V), C e L(W,Y) and

T L(U,Y), P 4 G(A), satisfy the compatibility condition.
T-1

(2.2) T - T A - (A - U)C(PI - A) 
1
(AI - A)-I B

for A,M # 0(A). This condition guarantees that the expression for the output in (2.1) is

independent of the choice of P # 0(A). We also point out that the output equation in

(2.1) only makes sense if the solution

t
(2.3) x(tix0 ,u) - S(t)x 0 + f S(t-s)Bu(S)ds, t ) 0

0

-4-

..-.. a!- . . .m e 1



of (2.1) is continuously differentiable in H. If that is the case then we denite the

output of (2.1) by

(2.4) y(tlx 0 ,u) - C(vI-A)- 1 (Ux(t;x0 ,u) - Ax(t;x 0u) - Bu(t)) + T u(t), t > 0

In particular, equation (2.4) makes sense whenever u(-) e W2' 2 [0,T;U] and

Ax0 + Bu(O) e H.

DEFINITION 2.1

The semigroup control system (2.1) is said to be well posed if for every T > 0

there exists a constant CT > 0 such thdt the inequalities

,xto,)2 •2 2 t 2dS
Ix(tux0 ,u)1 H <CT [IX0I H + f Iu(S)I Uds]

0

f uy(slxou)IdS c% [X + f WI u(s) ds]

o 0

hold for all x0 e H, u(.) e W2 '2 [0,T;U] with Ax0 + BumO) e H and all t e [0,T].

For a wellposed system (2.1) we introduce the associated input/output operator

T: L 2(0,-,U) + L c[0,,;Y) which is defined by

(2.5) Tu - y('iO,u)

This is possible by continuous extension of the expression y(t;x 0 ,u) to arbitrary

x0 e R and u e Lo2 10,m;U] using the inequality in Definition 2.1. We also introduce

the input-state map B L2[-,0;U] + H and the state-output map C H L o[0,-iY)

defined by

(2.6) Bu = f S(t)Bu(-t)dt , u e L0[-,0;U3
0

(2.7) Cx 0 (t) = CS(t)x0 , t 0 0 , x0 e w

-5-
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The composition H - CS of these operators is usually called the Hankel operator of the

control system (2.1).

H 2

L20-0,0) - + L (OC,mY]

H/

At the end of the section we collect a few fundamental properties of wellposed semigroup

control systems.

LEWMP 2.2

Suppose that the system (2.1) is wellposed and let w > w0 = lim t- 11ogS(t). Then
t+W

the following statements hold.

M If x0 e H and u e L 2[0,TjU] then x(-) - x(*;x0 u) e C(0,TIH]

WI' 2 [0,T;V] satisfies equation (2.1) in the space V for almost every t e [0,T].

(ii) If u e W '2 [0,TU] and Ax0 + Bu(0) e H, then x(*;x 0 ,u) e C [0,T;H],

y(;x0,u) e W
1'2 [0,TjY] and x(t;x0 ,u) = x(t;Ax0+BU(0),u), y(t;x 0 ,u) -

y(t;Ax0+Bu(O),u) for (almost) every t e [O,T].

(iii) There exists a constant c > 0 such that the inequalities

f e-2otCS(t)X 12 2 2
0 0 CStxIdt 4 c Ix o

T 2 2T 2 2
If S(t)Bu(-t)dtl2 C c 2 f e2otlu(-t)12dt
0 0

hold for every x 0 e W every T > 0 and every u e W 12[-TO;U] with u(-T) - 0.

PROOF: The statements ti) and (ii) have been proved in (22, Lema 2.5]. In order to

establish statement (iii) let us first note that HS(T)I < e T  for T > 0 sufficiently

large. Hence we obtain from the inequality in Definition 2.1 that
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f e- 2 wt CS (t) x 0 1 
2dt

0

: Te-2wte -2IkTCS( t)S(kT)x 1 2dt
k=0 0 0Y

T

k=0 
0

< T: -2wkT IS I2k Ix12

k-00H

C ce
2wT(e

2,oT-|sT)|
2 )-lix0,2

for x0 e W. The second assertion in statement (iii) follows by duality.

Statement ( l) . the previous Lemma says that the range of C lies in L [0,;Y]

and that 6 extends to a bounded operator on L2[-%,iU]. Therefore we obtain the
W

following commuting diagram

2 2
H

L W-o I -- --- 0-.) [o,,Yl

LENMA 2.3

(i) If x0 e W then * Cx e W12 (0,a;Y] and * CAx- 00 W 0

(ii) If * e w1 ,2 [--,O;U with *(0) = 0, then e W and A84 =8

PROOF: Statement (i) follows immediately from Lemma 2.2. If * e W 12[-,O0;U] is

supported on [-T,0] and satisfies *(0) = 0 then it follows also from Lemma 2.2 with

u(t) = *(t-T), t 0, that BI = x(T;o,u) e w and A B+ = ;(T;0,u) x(T;0,u) B$r. In

-7-
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general, statement (ii) follows from the fact that the functions in W 2-,O;U] with

compact support are dense and that A is a closed operator on H.

A more detailed discussion of semigroup control systems of the form (2.1) can be

found in SALAMON (22]. Furthermore, it is shown in [22] how large classes of partial and

functional differential equations can be represented in the framework of equation (2.1).

For the fundamental properties of strongly continuous semigroups the reader is referred to

PAZY [18]. The Hankel operator plays a central role in the extensive studies by FUHRMANN

[10] on discr,- and continuous time systems in Hilbert space with bounded input and

output operators. For systems with unbounded input and output operators the Hankel

operator has recently been studied by CURTAIN [5].

-8-
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3. A REPRESENTATION THEOREM

A time invariant, linear control system consists of three Hilbert spaces U, H, Y

and two continuous, linear maps

H x L2[0,-;U) ----- 0,-Hl

(x 1u) x(.;xou)

H x LL([0,-;U] - L 2 O,;Y]lo oc[0 Y

(x0,u) - y(.;x 0 ,u)

which satisfy the following conditions.

1. CAUSALITY

u(t) = 0 V t C T -> x(t;O,u) = 0, y(t;0,u) = 0 V t < T

2. INITIAL CONDITION
x(0lx 0 ,u) = V e H V U e L 2

[0,o;U]

3. TIME INVARIANCE

x(t+s;xo,u) = X(t;xts;xoU),Tsu) ,

y(t+s;x 0 ,U) = y(t;x(s;x 01 u),Tsu ) ,

V x e H, V u e L2  [0,-;U] V ts ) 0
xO Roc

This definition is similar to the one given by KALMAN-ARBIB-FALB E12] and every

wellposed semigroup control system of the form (2.1) satisfies its requirements. The

converse statement is formulated in the following Theorem.

THEOREM 3.1

Every time invariant, linear control system can be represented in a unique way by

operators A, B, C, T via (2.3) and (2.4).

The remainder of this section is devoted to the proof of this result. The main tool

is the next Lemia.

: : L :: :: :.':::: . - - :: ": ::::::::'::: :- :-- :. : - ': :- -: :::::::::::::::::::: : :.:: :.---- :-a



V L 2  [0,-;Y] for any c > 0. The only possibility that this concept is independent

of the choice of the space V is that the system Z is continuously observable in finite

time. This is however a much more restrictive assumption. It means that th operator

which maps x 0 e H into the output segment y(.;x 0,0) e L 2[0,T;Y] is injective and has a

closed range for some T > 0. The existence of a realization of T with this property

requires that there exist constants T > 0, M ) 1, w ) 0 such that the following

inequality holds for all t ) 0 and all 0 e L2[-',0;U]

t+T 2 T 2

(5.2) f I H (s) Ids 4 Met r n H4(s) Ids .
t 0

This condition is also sufficient (see YAMAMOTO [26, Theorem 7.4] for the single input-

single output case).

EXAMPLE 5. 1

Let a n > 0 be a summable sequence such that

n0 an

(5.3) rank = n + 1 V n e N

I ; n 2n]

Then the input-output operator T on L2oc[R] defined by

(5.4) u(t) = 7 %u(t-n)
n=0

is w-stable with w = 0. Furthermore, for any T > 0 and any * e L 2[0,T] there exists

a (unique) * e L 2[-T,0] such that H*(t) -(t) for 0 C t 4 T. This shows that there

is no inequality of the form (5.2) for the Hankel operator H associated with (5.4).

Therefore the realization constructed by YAMAMOTO (26] does not have a Hilbert space as a

state space in contrast to our result (Theorem 4.3). This is a consequence of his concept

of continuous observability in the output space Y= L2  [0,-]. In other words the state£oc

space of the realization is chosen to be the closure of range H in L 2o[0,-] rather
9.oc

than L 20,-] and is therefore not a Hilbert space. The construction in [26] leads to a

Hilbert space if and only if condition (5.2) is satisfied.

-23-



rhis operator will not be an isomorphism, in general, unless the original Hankel operator

H : HU - Hy has a closed range. In fact, it has been observed by BARAS-BROCKETT-

UHRMANN [2] that two canonical realizations need not be isomorphic. One way out would be

,o introduce a stronger notion of observability or reachability. This approach has been

?roposed by YAMAMOTO [26] and can in our context be fox."ilated as follows.

Let the control system E = (A,B,C,T ) be given and let the operators

L [- ,O;U] + H, C: H + L 2[0,-;Y] be defined by (2.6) and (2.7) respectively.
0 Jtoc

Furthermore, let LID L2[-",0;U] and V C L2 [0,-;Y] be complete topological

rectorspaces such that B extends to a continuous linear operator from U into H

&nd C maps H continuously into V. Then Z is said to be exactly U - reachable

Lf BU = H. It is said to be continuously V - observable if it is observable and C has a

-losed range in V. The latter concept has been used by YAMAMOTO [26] with

/ = Loc

Note that the system E is in fact continuously Y- observable with V= L2[0,_;Y].
Y Wh

Akewise, the system E is exactly U - reachable with U - L2[- ,OU]. Therefore the
U W

"educed system Zy is reachable and continuously Y - observable.

Now suppose that E = (A,B,C,T ) Is any other realization of T which is reachable

ind continuously Y - observable. Then the associated operator C : H + Y = H has a

:losed range and B : L2[- ,O;U] + H has a dense range. By (5.1), this implies

H = cl(range H) = cl(range C 8) = range C.

herefore C :H + H provides an isomorphism between the systems E and Ey (compare

liagram (4.10)). In the same spirit one can prove the existence and uniqueness for

ealizations which are either observable and exactly U - reachable or reachable and

-ontinuously Y - observable for any suitable space U or V.

In my opinion, however, the concepts of continuous V - observability and exact

- reachability are much too strong for infinite dimensional system. For example, the

ontrol system E¥ of Theorem 4.3 will in general not be continuously V - observable with

-22-

• o .- . . .- - . -. . * * *- • . *.. . ° - - . - . ,, . . , . •° . . . ° ° . ' ' " "
• . " ° - . • . ° , . o , . . o . ,- . ,' ." , . , " ." . ," -. ". -° . o, . . . . ° ° p . 0 , ° o , ° . . ,° •



5. OBSERVABILITY AND REACHABILITY

A seaigroup control system E = (A,B,C,T) of the form (2.1) is said to be

observable if the unobservable subspace

N = {x 0 e Hly(tx 0;0) = 0 V t ; 0

is zero. It is said to be reachable if the reachable subspace

R = lx(t1o,u)It ; 0, U e L 2o 0,-;U]}

is dense in H. Any semigroup control system can be made canonical that is reachable and

observable by restricting the state space to cl(R) C H and then factorizing it through

the subspace cl(R) n N. This procedure does not change the input-output operator T

which corresponds to Z.

Note that the semigroup control system E of Theorem 4.3 is already observable and

its reachable subspace is

(Compare formula (4.2)). Likewise, the semigroup control system E U of Theorem 4.4 is

reachable and its unobservable subspace is

Nu % H 01 C H

(compare formula (4.5)). Applying the above procedure to these systems we obtain two

canonical realizations U and y in the Hilbert spaces

(5.1) Hu = HU/ker H , H¥ = cl(range H).

These are related by the (reduced) Hankel operator

H Hu "--+ 4Hy

-21-
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NANITIUS (6], SALA4ON 121], PRITCHARD-SALANON E19]). Here the output plays the role of

the forcing function and the input the role of the initial function.

Now suppose that the input-output operator T is realized by a third semigroup

control system E - (A,BCT ) where A generates a semigroup S(t) e L(H) of

exponential type 0 . lirm t-L ogIS(t)I ( W. Then the Hankel operator H can be

decomposed in the form

H

y

where the operators

B e L(L 1 ,H) n L(Wu,W) n L(vu ,V)

C e L(H,Hy) n L(W,wy) f) L(VVy)

are defined by (2.6) and (2.7) (see lemma 2.3). These operators make the following

diagram commute.

S u(t)

SI S(t)

(4.10) U V D H +H D W Y

ByI ! S 2 (t)
y C y I y

-20-
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Likewise, the control system (4.4), (4.5) is represented by the following spaces and

operators

HU = L 1--,01U] ,HU L2  ,;U]

W = e w1 t ,2  ,o o '(o) -01 = 1,2

VU W

(4.7) Y4=4A UO

S u (t) T t 4 't) to =

ce " HVO) ,BUO = 0(0),U t

for p e wU  and *e VU. This system will be denoted by U

Both systems have the same transfer operator T which may be defined in terms of

the Laplace transform, that is

(4.8) T Pu0 - 0(1-e-1T) -  f e-pty(t;uox[O,T])dt
0

for u0 e U, T > 0 and Re sufficiently large.

If the input-output operator T is w-stable then the Hankel operator

H e L(Hu, fr)l L(WojWy) n L(VuVY)

(Lemma 4.2) provides a natural homomorphism between the systems EU  and E . More

precisely, the following diagram commutes

Su(t)

B U D U HUD C

(4.9) U B H I H f

yV D - H D W C Y

Note that the role of the Hankel operator in this context is very similar to the role of

the structural operator F in the theory of functional differential equations (DELFOUR-

-19-
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PROOF: An our state space we choose H m L: ,OU] and define

. [$(t~s} ( <-t,
(4.4) x(tu,u)(s) -u(t+s), -t ( at( 0

(4.5) y(ti*,u) - H*(t) + y(tiu) ,

for * e H, u e Lt 2[0,rIU), t I 0. These maps define a time invariant linear control

system in the sense of section 3 and hence the statement follows from Theorem 3.1. 1

Note that both in Theorem 4.3 and in Theorem 4.4 the constructed semigroup operator

S(t) has exactly the norm •a . This allows the following conclusion.

COROLLARY 4.5

Let T be a time invariant, causal, linear input-output operator and let W0 e R be

given. Then the following statements are equivalent.

(i) T is u-output-stable for all w > w0 .

(ii) T is w-input-stable for all w > w0 .

i.ii) T is u-stable for all w > w0 .

We obtain from Theorem 3.1 that the control system (4.2), (4.3) is represented by the

following spaces and operators

Hy - L W[O,-,Y] H,, - L[-.O,Y],

sY(t)6 = t Y [(t) =t,
CY u(0 By* Hu 0

S(4, = 4(0 , S (t)* e()

for e Wy and * e vy. This system will be denoted by Z.

-18-
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x (t+S, ,U)

T ++ tt. Y( 3-xrot+s])

- J= + TY(*1U*X[0 ,8])) + t.sY(uu*x[st+s])

- T ~j,)+ S (T 8T(,XOts

. tX(SFIuU) + rty(.u(Tsu)*xOt3)

and

Y(t+sl ,U)

- *(t+s) + y~t+s;u)

- *Ct+s) + t+;*cs]T T5U

. T + T sY(.uX(10 ,5 ]))t + y(t;T sU)

- y~t;X(s;$,u),T U)

The next result is strictly dual to Theorem 4.3 and we will only indicate the main

idea of the proof.

THEOREM 4.4

Every w - input-stable, tine-invariant causal, linear input/output operator can be

realized by a wellposed semigroup control system of the form (2.1).

-17-



LEMMA 4.2

Let T be any time invariant, causal, linear input-output operator. Then the

following statements hold

1,2 21 2
i) If u e w 2 (RiU] 0 [oc[U] then y = Tue w 'c[Ru) and -T

(ii) If T is w-input-stable and * e w1'2 -m,O;u] with *(0) - 0, then

.H* e 1,2 1y] with H;.
Jtoc

PROOF: The proof of statement i) is strictly analogous to that of Lemma 3.2 and

statement (ii) follows from density considerations as in the proof of Lemma 2.3.

If T is the input-output operator associated with a wellposed semigroup control

system of the form (2.1) via (2.5) then we say that T is realized by the control system

(2.1), respectively by the operators A,B,C,T

THEOREM 4.3

Every w-output-stable, time invariant, causal, linear input-output operator can be

realized by a we1lposed semigroup control system of the form (2.1).

PROOF: As our state space we choose H - L 2[0,;Y] ana define

(4.2) x(t;#,u) - Tto + Tty(.Iu*x[o,t])

(4.3) y(t;#,u) 4 *(t) + y(t;u)

for # e H, u e LC2 [0,;U], t A 0. Then equation (2.5) in an immediate consequence of

(4.3). In view of Theorem 3.1 it therefore remains to show that the maps (4.2) and (4.3)

define a time invariant, linear control system in the sense of section 3. The maps are

obviously continuous and linear and satisfy the initial condition x(0;*,u) - .

Now suppose that u(t) - 0 for t 4 T. Then x(t;0,u) - Tty(.;O) = 0 and

y(t;0,u) - y(t;u) - 0 for t 4 T. This proves the causality and hence it remains to show

that the system (4.2), (4.3) is time invariant. In fact, we obtain

-16-
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associated with the extended input-output operator T. This operator is obtained by

extending the input u e L2[-',OIU] to all of R via u(t) = 0 for t > 0 and then

restricting the associated output y - Tu to the interval [0,-). The Hankel operator

associated with T* is then given by

* - -L- Y] - L 2 0-, .

Note that the Hankel operator, in general, does not give us the complete information about

the input-output behavior of the system. In particular, the Hankel operator which

corresponds to the control system (2.1) only depends on the operators A, B and C but

not on T. The simplest example of this situation is that U - Y and T is the

identity operator in which case q is zero. Nevertheless the Hankel operator plays a

crucial role in realization theory. In particular, it serves for characterizing the

stability behavior of the input-output operator T.

DEFINITION 4.1 (w-stability)

Let w e R be given. Then the input-output operator T is said to be

(i) w-output-stable, if H maps L2[-,O;U] continuously into L 2O,-;Y],

(ii) u-input-stable, if H extends to a continuous, linear operator from

L2 [-,OU] into L o c

(iii) u-stable if H extends to a bounded linear operator from L2 (-,0;U] into
W

L2 0,;Y] .
W

Of course, T is u-input-stable if and only if T* is u-output-stable and vice

versa. If T is the input-output operator associated with a well posed semigroup control

system of the form (2.1) then it is u-stable for every W > W0 - lim t- XogtS(t)I
t+00

(Lemma 2.2 (iii)).

-15-

,':....--. .. .-.. . .- .. . ..-.-.-. .. .. . .- . . . . -.. - . - .--.... .-. .-..



4. REALIZATION

Let the input space U and the output space Y both be Hlbert spaces. A

continuous, linear input-output operator

T : L 2 1[1U] - L 2 MOC[JY]

is said to be causal if the implication

u(t) - 0 V t C T -> Tu(t) - 0 V t 4 T

holds for all T e R. It is said to be time invariant if

(4.1) rtT - T~t

for every t e R. Given such an operator T we sometimes use the notation y(t;u) -

Tu(t). Note that a linear input-output operator T is time invariant and causal if and

only if its dual operator

• 2 [2
T L 0 , joc , oc[RU]

has the same properties. At some places we refer to T as the extended input output

operator. Via property (4.1) this extended operator is uniquely determined by its

restriction to the interval [0,N) which we still denote by

T : ,L2r0,-1U1 -: L2('0,-1Y]

Therefore every semigroup control system E = (A,B,C,T) of the form (2.1) determines

a time invariant, causal, linear input-output operator T via equation (2.5). The

purpose of this section is to prove the converse statement.

To this end it is convenient to consider the Hankel operator

H L2[-,O;U] -. L 2oOs,;Yj

-14-
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- (NJI-A) 1Bu0  (PI-A) (Iix -AX -Bu 0j) e w

with u0  u(O). Then we obtain

I y(Oix0 1u)

=y(O~x -(IJI-A) -1 U0 00) + Y(OI(MI-A)- Bu0 su) + y(O;O,U-u)

0~ 00

C(i-)I~ AX.B. ju
This proves equation (2.4) for t -0. In general (2.4) follows from the time invariance

of the control system.

-13-
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< z0 'x(T;Ou) >H

T< w(T-s;z0 ),u(s) >Uds

0
Tf < w(OiS*(T-s)z0 ),u(s) >uds

0
T
f < *S*(T-)ZO,U(s) >uds
0

T
-< z0,1 S(T-s)BU(s)ds >V.,V

0

This shows that x(t;x 0 ,u) is given by equation (2.3) for every x0 6 H, every

u e L2 [0,.U] and every t ; 0. In particular x(-ix0,u) e C [0,TIH whenever

u e w "2(0,TU] and Ax0 + Bu(0) e H (Lemma 2.2).

4. The operator family TP

For every u0 6 U we have the identity

A(II-A) -Bu + Bu0 - )(u.E-A) 'Bu e H
00 0

Hence it follows from Lema 3.2 that y(*,(UI-A)-IBu 0 ,u 0 ) e WI'2(0,TY] where u0  also

denotes the constant function u0 (t) u 0 . This allows us to define

(3.6) Tu 0 - y(O;(PI-A)-1 Buou 0)

for u0 e U and * OW(A). The resolvent identity

(pl-A)-  - (XI-A) " I (.O-u)(i.A)- 1(I-A)-

for PA e O(A) implies the compatibility condition (2.2). It remains to establish

equation (2.4) for all x0 e H and u e W 12[0,TU] with Ax0 + Bu(0) e H. For this

purpose let us first note that in the case u(M) = 0 we get y(0;0,u) - y(c,0,T_ u) - 0

since y(.;O,T_ u) is continuous (Lemma 3.2) and vanishes (almost) everywhere on the

interval [0,e]. In the general case we make use of the fact that

-12-
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-3. The Operator B

For every z0 e H let us define w(.;z0 ) e L 2 [0,w;U] by the identity

T

(3.3) < w(T-sgz0 ),u(s) >Uds < z0 'x(T;0,u) > H
0

for every T > 0 and every u e L 2  [0,-;U. It follows from the causality and time

invariance that w(t;z 0 ) is well defined. Moreover, the following equation holds for all

e 0  H and all t,s > 0

(3.4) w(t+s;z 0 ) " w(t;S*(S)z 0 )

This is a consequence of the identity

T

f < w(tS*(s)z0 ),u(T-t) >Udt - < S*(s)z0 'x(T;0,u) >H
0

a < z0'S(s)x(T;Ou) >H

a z ' x(T+S;Ou.X[O,T) >H

T
f < w(T+S-tgz0 ),u(t) >udt
00

T
f < w(t+41gz 0 ),u(T-t) >Udt
0

for u e 2 o0,giU]. If t0 V (A*) then it follows from (3.4) in connection with Lemma
tioc

3.2 that w(,;z 0 ) e W'c
2 [0,-;Ul and :(tjz0 ) = w(t;Atz0 ) for almost every t ) 0. This

allows us to define B e L(U,V) by

(3.5) B*0 w(0jz0 ), t 0 VO

Now let u e L 2[0,gU] and ze V* be givv n
. .,en we obtain from (3.3), (3.4) and

otc

(3.5) that

-11-
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LEMMA 3.2

|-.

Let x e H be the initial state and u e w 1 O, -U] be the input of a time

invariant linear control system. Furthermore, suppose that x(t) - x(tlxou) is

continuously differentiable in H for t ; 0 • Then y(;x0 ,u) e W"[0, /g] and

y(t;x 0 ,u) - y(t;x(0),u) for almost every t 0 0

PROOF: Note that h-l(T u-u) converges to u in L2o1[,-iU]. Therefore the function
h

h-(ylt+hlx0 ,u) - ylt~x0 ,u))

- y(t ;h'1 (x(h;x0 ,u)-x0 ),h-1 (hu-u))

converges to y(o;;(0),u) in L2 [0,TiY] for every T > 0 as h tends to zero. This

proves the statement of the Lemma. C3

PROOF OF THEOREM 3.1

". 1. The operator A

"* The operators S(t) e L(H) defined by

(3.1) S(t)X 0  x(t;X0 ,0)

for t > 0, x e H, form a strongly continuous semigroup and we define A to be its

infinitesimal generator. Furthermore, we introduce the Hilbert spaces W - 0(A) C H

and V* = D(A*) C H* endowed with the respective graph norms so that W C H C V with

continuous dense injections. Then s(t) e L(w) n L(v) and A e L(W,H) r) L(H,V).

2. The operator C

1,2
If x0 e D(A) then it follows from Lemma 3.2 with u - 0 that y(otx 0,0) e W (0,T;Y]

with y(t;x 0 ,0) - y(t;Ax0 ,0). In particular, y(t;x 0 ,O) is continuous and we can define

C e L(w,Y) by

(3.2) Cx0 - y(0;x 0 ,0), x0 e w

-10-
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* 6. CON4TINUITYX AN4D BOUND3DNESS

For the semigroup control system E =(A,B,CT P the smoothness of the output is

related to the degree of boundedness of the output operator C in the following way.

REE4ARK 6.1

Let E - (A,B,C,T )be a well posed semigroup control system and let

C :H + L 2 [O,eY] be defined by Cx0 = CS(t)x0  for x0 e W and t ) 0. Then

Ci) C e L (H, Y) if and only if C maps H continuously intoC c

(ii) C e L(li,Y) satisfies an inequality of the form

T 2 2 2
'6.1) f ICS(t)x 0 idt 4 c Ix 0 IV , x 0 e H

0

*for some constants T > 0, c > 0 if and only if C maps H continuously into

1,2

(iii) c e L(V,Y) if and only if C naps H continuously into CI[,II

Note that the assertions (ii) and (iii) follow from the fact that d/dtCS(t)xo

CS(t)Ax0 and that pI-A:H + V is an isomorphism for p~ # O(A).

Conversely, the smoothing properties of the Hankel operator imply the existence of a

* realization with a "wll behaved" output operator C.

PROPOSITION 6.2

Let T be an c-input-stable, time invariant, causal, linear input-output operator and

let H :L2 -'0,OU] + L ( 0,g;Y] be the associated extended Hankel operator. Then the

* following statements hold.

Mi If H maps L 2 1--,0;U] continuously into C l[o 1-Y) then there exists a

realization E - (A,D,C,T )of T such that

(b.2) WA lim t1 logIS~t)t

and C e LCH,Y).

-24-
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(ii) If (( maps L2 (,O;U) continuously into £oc[0,-;Y) then there exists a

realization E (A,B,C,T) of T such that (6.2) holds and C e L(H,Y) satisfies (6.1)

for some constants T > 0, c > 0.

(iii) If H maps L2[- ,0,U] continuously into C c0,0Y;y then there exists a

realization E - (A,B,C,T ) of T such that (6.2) holds and C e L(V,Y).

PROOF: Consider the realization EU of T given by (4.7). Then

cusu(t) = H*(t)

for e 8 HU L2 [--,0;U]. Hence the statements of the proposition follow from Remark 6. 1

By duality, the properties of the input operator B in the realization are related

to the smoothness of the dual Hankel operator H*.

PROPOSITON 6.3

Let T be a time invariant, causal, linear input-output operator with the associated

Hankel operator H and let w e R be given. Then the following statements hold.

(i) H* extends to a continuous map from L2 [-,0;Y) into Co[0,-;U )  for some

W 1 if and only if there exists a realization E = (A,B,C,T 1  of T such that

(6.3) lim t- loglS( 'l < W
t4

and B e L(UH).

(ii) H extends to a continuous map from L2[- ,0;Y] into W [0,-;Y] for some

< WI if and only if there exists a realization E = (A,B,C,T ) of T such that (6.3)

holds and B e L(U,H) satisfies

T
(6.4) Of S(T-s)Bu(s)dsIw W <u L2

0 L 10,T;U]

for some constants T > 0, c > 0.

-25-
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(iii) i*extends to a continuous map from L (-,O1Y] into C1lo (O,mUJ for some

W < W if and only if there exists a realization E - (A,BCT ) of T such that (6.3)

holds and B e L(U,W).

Thus we have characterized those input-output operators T which can be realized by

a state space system in which either the input operator B or the output operator C is

bounded. It seems to be a much more delicate problem to find necessary and sufficient

conditions under which there exists a realization Z - (A,D,C,T )with both s e L(u,H)

and c e LCH,Y). A necessary condition is of course that T can be represented in the

form

t
*(6.5) Tu(t) -Du~t) + f' G(t-s)u(s)ds

* where D 6 LCU,Y) and G(t) e LCU,Y), t > 0, is strongly continuous and satisfies some

exponential bound. A sufficient condition is contained in Proposition 6.2 (111) and

Proposition 6.3 (111). Somewhere inbetween lies the following result.

* THEOREM 6.4

Let T be a time invariant, causal, linear input-output operator with the associated

*Hankel operator H. let wi e R be given. Then the following statements are equivalent.

21,Wi H e L(L (-,OI], W 0-Y)for some w < i

(ii) H* e L(L 2E-,01Y], iW 1, 0,-MU) for some w< i
ww

(iii) There exist Hilbert spaces Z C X with a continuous, dense injection and

* operators A e L(z,x), B e L(u,X), c e L~z,Y), D e L(U,Y) such that A is the

* infinitesimal generator of a strongly continuous semigroup S(t) e L(X)riL(z) with

lin t- logUS(t)I < W I Furthermore, the inequalities

T
(6.6) If S(T-s)Bu(s)dsI5 Z c 2

0 L [0,TU]

(6.7) *CSC*)x 0 1 L2 [0TY 4C Ix 0 %. x 0 e z,

-26-
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hold for some constants T > 0, c > 0 and the operator T is given by

t
(6.8) Tu(t) = Du(t) + C f S(t-s)Bu(s)ds, t-C R

for u e L 2, [R,U].

0 , 10C

PROOF: Proposition 6.3 (i) shows that statement (ii) holds if and only if there exists a

realization E - (A,B,C,T1 ), with (6.3) and B e L(U,H) satisfying (6.4). But this is

exactly equivalent to statement (iii) with X = H and Z - W. In particular, it follows

from (2.2) that the operator

D = T - C(PI-A) B e L(U,Y)

is independent of U and therefore T is given by (6.8). The equivalence of the

statements (i) and (iii) follows by duality. C3

In the remainder of this section we briefly discuss the case that the input space

U = IF and the output space Y = Rp  are finite dimensional.

Note that the second statement of the following theorem is a modified version of a

result by YAMAMOTO [26].

THEOREM 6.5

Suppose that U - IF, Y = RP  and let T : L2 oRU] + [R1Y) be a time
O,1oc 0, 10C

invariant, causal, linear input-output operator. Then the following statements hold.

(i) T admits a realization E = (A,B,C,T) with either C e L(H,Y) or B e L(U,H)

iff T is given by (6.5) with D e Rp x m  and G e L2 [0,CDRpxm] for some w e R.

(ii) T admits a realization Z = (A,B,C,T ) with either C e L(V,Y) or

B e L(U,W) iff T is given by (6.5) with D e RP x m  and G e W1' 2 [0,-,R P x m] for some

w e R.

-27-
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PROOF: If T is given by (6.5) with G e L2 [0,g;Rp x m] then H is given by

0
(6.9) H(t) = f G(t-s)0(s)ds , t A 0

and therefore maps L2 E-00P] continuously into Coc[0,;Rp]. Conversely suppose

that H maps L2[-DeR] continuously into Coc[0,m;Rp]. Then it follows from the

Riesz representation theorem that there exists a function G e L2 0,-;R P X M  such that

0

HIO) = f G(-s)(s)ds
-0

for all * e L2[-,O e l . Using the time invariance we obtain that H is given by

(6.9). Now define the input-output operator T by (6.5) with D - 0. Then the equations

(4.7) show that T and T admit the same realization except for a possible difference in

the operators T and T • Hence it follows from (2.2) that the matrix

T - T = D e i' is independent of p and therefore T is given by (6.5). This

proves statement (i).

If T is given by (6.5) with G e W1 ' 2 [0,-;Rp x m ] then it follows from (6.9) thatW

H* e I for every # 6 L2[-a,O;R ] and
'5)

0
d/dt H (t)- f G(t-s)*(s)ds

Hence T admits a realization I - (A,B,C,T 1 with C e L(V,Y) (Proposition 6.2 (i)).

Conversely, suppose that H maps L 2 [",OuR;F continuously into C oc[0,-; ].

Then T is given by (6.5) for some matrix D e RP x m  and some function

G e L
2
[0,-;MPxm]. Furthermore, there exists a function K e L 2t, ,a

5
m

xm ] 
such that

0
d/dtHi (t) = f K(t-s)l(s)ds , t ) 0

for all * e L2
[-,OR] . This follows again from the Riesz representation theorem and

from the time invariance. We conclude that

0 T
f (G(T-s) - G(-s) - f X(t-s)dt)*(s)ds

- 0
T

H M(T) - H (0) - f d/dtH(t)dt - 0
0

-28-
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for all e L2([-,0; m] and hence G is absolutely continuous with K. This

proves statement (ii).

It is a much more difficult problem to characterize the requirements of Theorem 6.4

in terms of the function G(t). It follows from Theorem 6.5 that the operator T can be

written in the form (6.5) with G e L2 [0,-;R"xm] if the statements of Theorem 6.4 are

satisfied. Furthermore, a sufficient condition is that G(t) e RP x m  is locally of

bounded variation and satisfies an estimate of the form

(6.10) VAR G r Me wt

[0,t)

for some w < wi , M > 1. In this case we have

(6.11) d/dt H *(t) = f dG(s)id(t-s)
t

for almost every t • 0 and every * e L2 [-,0;?]. But G need not be of bounded

variation. In the same way there exist time invariant, causal, linear input-output

operators T which cannot be represented in the form

(6.12) Tu(t) - f d(s)u(t-s) , t e R
0

for some matrix function U(t) of bounded variation.

-29-
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7. CONCLUSIONS

We have established a quite general realization theorem for infinite dimensional,

linear control systems using a state space approach with unbounded input and output

operators. The whole theory can be developed with minor alterations if the assumption on

w-stability is dropped and the state space is allowed to be a Frechet space rather than a

Hilbert space. For single-input/single-output systems and bounded input and output

operators this has been done by YAMAMOTO (26). Example 5.1, however, shows that such an

approach might not always be advantageous.

An interesting and nontrivial problem might be to characterize those input-output

operators T which can be realized by a state space model E - (A,B,C,T ) where both the

input operator B e L(U,H) and the output operator C e L(H,Y) are bounded. Results in

this direction have been developed by AUBIN-BENSOUSSAN [1], BENSOUSSAN-DELFOUR-MITTER (4),

FUHRMANN [10].

We also mention the problem of characterizing those operator families T which

represent time invariant, linear input-output operators T in the frequency domain. This

problem has been studied by PANDOLFI (17], ROUCHALZAU-SONTAG [20], FUHRMANN [10] and

others.

Another nontrivial problem seem to be under which conditions the w-stability of the

input-output operator implies the w-stability of the semigroup in the realization.

Finally there is the question of how to deal with non-wellposed input-output

operators.
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